文稿1 定子绕组匝间短路事故引起水轮发电机组

定子绕组匝间短路事故引起水轮发电机组

剧烈振动案例分析

曾游生

摘要:某电站立式水轮发电机组A 相绕组匝间短路,由于该发电机定子绕组为2Y 并联

接线引出,当匝间短路致线棒熔断后,A 相仅剩下一条支路,定子绕组线电流严重不平衡。叙述事故经过、后果,并分析了造成事故的机理。

关键词:水轮发电机匝间短路 不平衡电流 振动 烧毁巴氏合金瓦和转轮迷宫

0 引子

二○○七年四月八日零点五十五分,遂川县某电站1#机组滑环处飞溅出强烈的火星;机组有功负荷由1050kw 锐减至300kw 左右,无功功率表指针反向打表;继电保护发出过负荷、转子一点接地信号;机组强烈振动。运行人员立即分断机组出口油开关,跳开励磁开关,实施紧急停机操作程序。停机过程中发现:跳闸瞬间,滑环处火花反而更大,加闸减速停机快结束时,定子内部在+X轴方向冒烟,停止转动之后又窜出小股火苗。值班人员迅即使用干粉灭火器灭火,约2~3分钟将火扑灭。

1 事故后展现的表象

1.1 四月八日上午,电站相关人员对该机组进行了现场察看、测试。主要表现在:励磁机电枢轴上部的钢制下集电环表面烧黑、铜电刷与刷握烧结在一起、电刷无法取出;水轮机顶盖上有黑褐色污水、污油;主厂房施

工分缝混凝土结构缝隙清晰可见、缝内尘土灭失;励磁机线圈绝缘电阻大于10 MΩ、发电机转子线圈绝缘电阻500 MΩ、发电机定子线圈直流电阻:A 相0.63Ω、B 相0.337Ω、C 相0.343Ω;发电机定子线圈绝缘电阻见下表:

定子线圈A 相首端对铁芯和末端对铁芯用直流电桥施测读不出电阻值,初步判断为非直接接地故障。

1.2 事故抢修拆解水轮发电机后发现:在+X轴方向A 相末端定子绕组的下层线棒上部从定子铁芯线槽内105mm 到绕组上端部范围内的线棒全部熔断,详见图1。 绕组外层绝缘物碳化、但尚未破碎,铁芯线槽未损坏;φ265导轴承筒式瓦表层全是黑色烧(磨)蚀物及石棉盘根碎屑;上、下固定迷宫环在+X 0-Y 扇区有约圆周长的1/3弧段严重磨损;水轮机轴承颈段有1/3圆周面磨损,上部较轻微、下部严重,其中:对应水导瓦下部环向油沟槽上圆环边磨损深达0.30mm ,下边磨深达0.5mm ;转轮上冠、下环表平面偏磨成凹凸沟槽,上冠处深0.3mm 、下环处沟深0.60mm ;转轮叶片杓部背面镶焊的不锈钢耐磨片有5片成角形或弧形断裂,其中3个连续叶片。

定子

255铁芯

(径向由内向外)

说明:

3/41.定子槽数198,线圈节距1-8,每极每相槽数2 ,左线棒为

下层绕组,右线棒为上层绕组,B级绝缘

2.每圈9匝,线规2-1.95×4.1mm2双玻璃丝包扁铜线,SBECB

3.电气接线型式为2Y

4.第1匝熔断长度250 mm(最长段),第4匝熔断长度55 mm(最短

段),斜端部并绕线匝外边匝熔断长度比内边匝短约50~60mm

图1:定子绕组尺寸及匝间短路熔断区域图

5 0 6 3 5

2 机组有关参数及事故前运行工况

2.1 发电机设计参数

转子磁极对数12,定子铁芯高度360mm ,定子铁芯线槽数198,三相双层迭绕组,每相每极槽数q = 2,极距τ=Q/2qm = 8.25槽,槽距角α=21.81818182°,短节距y 1=7(1-8)槽。绕组分布系数k b =0.9553, 短距系数

3

4

k p =0.9718。

发电机有198个线圈,每相绕组有66个线圈,由两条支路并联联接组成,每支路由33个线圈串联联接。相绕组出线端子在-X 侧(首端)和+X侧(末端),定子绕组接线为星形接线。

发电机顶端同轴安装有直流励磁机和永磁发电机。

2.2 立式水轮机相关参数

HL240转轮标称直径1200mm ,上下迷宫转动部分为圆筒状平面、无沟槽形式,过机流量7.9 m3/s ,Φ265筒式导轴承轴瓦高度275mm ,主轴密封为石棉盘根箱结构。

2.3 事故前运行工况

发电机出口线电压6.2kv ,线电流110A ;有功功率1050kw ,无功功率650kvar ;励磁电压90v ,励磁电流 195 A ;温度、摆度、振动、水压力等参数均无异常。

3 事故分析

发电机定子线圈线棒直线部分长度460mm ,每圈9匝,由两根1.95×4.1mm 2双玻璃丝包扁铜线并绕制而成;因定子绕组每支路由33个线圈串联组成,所以每线圈等效电压190.91 v,每匝等效电压21.21 v,又因为是短距分布绕组,故实际电压要稍大于上述等效电压值。转子线圈每极33.5匝,由一根3.8×13.5 mm2扁裸铜线绕制而成,每极额定电压48 v,最大电流310 A;定子铁芯内径R1150,转子装配磁极靴弧顶外径R1146,极距τ=301.07 mm,磁极铁芯极靴圆弧半径R812,极靴宽度210 mm,磁极铁芯高度357 mm,宽度140 mm。定转子空气间隙4 mm。

当发生事故时发电机进相运行,输出有功功率,吸收电网感性无功功率,U = 6.2 kv,P = 300 kw,无功功率表指针反向打表,即Q ≥1500kvar, 由视在功率公式:

S P +Q =3U I ,求得 : I P +Q /3U

= 300+1500 /(3×6.2) = 142.4 A

事故前,该电站两台机组并列后向电网馈电。假设6.3kv 母线电压受事故影响较小,仍然三相对称,馈电电流亦基本对称。因发电机A 相绕组一条支路断开,所以A 相电流只能全部流经A 相绕组的另一条支路。对比B 相、C 相绕组,A 相绕组支路电流是B 相、C 相绕组支路电流的两倍。

下面用对称分量法对事故工况进行筒略分析。 正序电流分量、负序电流分量、零序电流分量分别为:

·

I a +=(Ia + αI b +αI c) /3

·

··

·2

I a - ﹦(I a + α Ib +αI c) /3

I a o ﹦(I a + Ib + Ic) /3

·

·

·

·

·

2

··

其中:旋转因子 α=e

j120o

13

=cos120 +jsin120=-2+j 2

o

o

(1)支路电流的复数表达式为: 1) 完好支路(-Y 半圆侧):

·

I -Y a =I -Y a =142.4 A I-Y b =71.2e

·

-j120o

A I-Y c =71.2 e

·

j120o

A

2) 熔断A 相绕组支路(+Y 半圆侧):

I+Ya =0 A I+Yb =71.2e

·

·

-j120o

A I+Yc =71.2 e

·

j120o

A

(2)将上述两支路复电流分别代入对称分量法公式中,经整理计算后,得:

1)完好支路(-Y 半圆侧):

I-Y a +=94.93 A I-Y a -=23.73 A I-Y a o =23.73 A

·

·

·

2)熔断A 相绕组支路(+Y 半圆侧):

I+Ya +=47.46 A I+Ya -=-23.73 A I+Ya o =-23.73 A 各支路电流、正序分量、负序分量、零序分量的矢量图绘于图2、图

3

·

·

·

从以上计算数据可知:各支路三相电流之差远超过额定电流的20%;

各支路负序电流超过额定电流的30%,从而超过了不大于12%的规定值。另

外,+Y 半圆侧支路A 相负序电流及零序电流的实际方向与正序电流的实际正方向相反,即相差180电角度。对比+Y 半圆侧支路和-Y 半圆侧支路电流矢量发现:各对应相的负序电流矢量和零序电流矢量分别反相,即相差180电角度,而有效值相等;正序电流矢量分别同相,但-Y 半圆侧支路电流是+Y 半圆侧支路电流的两倍。根据电机学原理:

同步电机相绕组电枢反应基波磁动势:

f k1 = 0.9 kdp1 Nk1 I cosωt cosα= F k1 cosωt cosα 三相合成基波磁动势的幅值:

o

o

3

F 1 = F k1 = 1.35 kdp1 Nk1 I

2

由于三相零序基波磁动势合成为零,在气隙中不产生零序磁场,仅在各相绕组中产生零序漏抗,且其量值远小于负序漏抗,所以零序电流分量在定子绕组中产生热损耗。

发电机绕组基波绕组系数、线圈组匝数为已定值,所以f k1和F 1均正比于电流I 。对于正序电流分量三相合成基波磁动势的幅值,+Y 半圆侧支路是-Y 半圆侧支路的一半,且正向旋转的磁动势矢量同向;而对于负序电流分量三相合成基波磁动势,两支路的幅值相等,但反向旋转的磁动势矢量反向。由于事故时,发电机进相运行,即相电流I 超前于相绕组感应电动势E o 一个电角度φ,F 1对励磁磁势F f1起增磁作用。故气隙磁通密度将比空载时增大,且-Y 半圆侧大于+Y半圆侧。负序电流分量产生的三相合成磁动势在空间上始终指向定子圆周面的某一侧,并以ω=2πf 1角速度反向旋转,在转子绕组中感应f 2 = 2f1 = 100Hz的交变电动势,当转子绕组短路时,产生交变电流,起削弱负序磁场的作用。由于正序分量合成磁动势和

°

·

·

·

负序分量合成磁动势,各以同步速向相反方向旋转,在任一瞬间合成磁动势仍按正弦规律分布,为一椭圆形旋转磁动势。合成磁动势的幅值:

F = F ++F -+2 F+ F-cos2ωt

上式表明:合成磁动势的幅值是随时间变化的。

合成旋转磁动势的角速度与合成磁动势幅值的平方成反比,在椭圆长轴处角速度低,在短轴处角速度高,故角速度也是随时间变化的,但角速度的平均值仍为ω=2πf 1。

综合上述分析可知:

(1)由于不平衡电流的作用,使发电机的合成磁动势发生了变化,且是一椭圆形旋转磁动势。

(2)合成磁动势的角速度是随时间变化的,但角速度的平均值仍为维持ω=2πf 1不变。

2

2

(3)正序分量合成磁动势和磁通,-Y 侧气隙中量值是+Y侧的两倍。

(4)负序分量合成磁动势和磁通,气隙中量值相等,但瞬时实际方向相反。

(5)零序分量合成磁动势和磁通为零。

发电机定子绕组接线是两支路并联引出,而两支路的三相绕组中电流又严重不对称。正序电流分量产生的电磁力,-Y 侧大于+Y侧,使得转子受到一个指向-Y 侧的电磁作用力;负序电流分量的效应,使得转子受到一个反向旋转的电磁作用力;由于相绕组中电流严重不平衡, 而在转子转轴和定子机座上产生较大的振动力矩,导致损坏水轮发电机组结构。

从定子铁芯线槽未损坏和线圈损坏情况来看,可能是双玻璃丝包扁铜

线有气孔、杂质,或有对焊接头局部裂纹、夹渣现象等缺陷,导致发热、熔断、引弧,匝间短路,直至把整个线圈线棒熔断。

4 结语

定子绕组多条支路并联后引出接线的水轮发电机,当某一条支路因故断开,产生的不平衡电流对发电机的安全运行影响很大。正序电流分量使转子受到一侧向不平衡电磁力,引起发电机转子振动,负序电流分量引起发电机的转子过热、转子振动,往往使发电机转子烧坏、水轮发电机组结构损坏、甚至损毁。

因此,除了在设计、制造发电机时,采取三相平衡措施,控制好施工工艺,做好平衡工作外。运行部门要完善继电保护、巡检制度、安全措施等,使发电机不欠压、超压或长期过负荷运行。经常测量发电机定子、转子线圈直流电阻、绝缘电阻,并进行历次之间的比较,以期发现直流电阻值、绝缘电阻吸收比、极化系数等参数是否符合规定,有否不明原因的变化、异味等。通过加强运行、巡视、维护、检测等日常管理工作,努力消除机组隐患,保证发电机组的安全、可靠运行。

参考文献:

1. 李发海 朱东起 电机学(第三版)[M ]北京 科学出版社 2001.1 2. 王正茂 闫治安等 电机学(第一版)[M ] 西安 西安交大出版社 2000.9 3. 胡虔生 胡敏强 电机学(第二版)[M ]北京 中国电力出版社 2009.7

定子绕组匝间短路事故引起水轮发电机组

剧烈振动案例分析

曾游生

摘要:某电站立式水轮发电机组A 相绕组匝间短路,由于该发电机定子绕组为2Y 并联

接线引出,当匝间短路致线棒熔断后,A 相仅剩下一条支路,定子绕组线电流严重不平衡。叙述事故经过、后果,并分析了造成事故的机理。

关键词:水轮发电机匝间短路 不平衡电流 振动 烧毁巴氏合金瓦和转轮迷宫

0 引子

二○○七年四月八日零点五十五分,遂川县某电站1#机组滑环处飞溅出强烈的火星;机组有功负荷由1050kw 锐减至300kw 左右,无功功率表指针反向打表;继电保护发出过负荷、转子一点接地信号;机组强烈振动。运行人员立即分断机组出口油开关,跳开励磁开关,实施紧急停机操作程序。停机过程中发现:跳闸瞬间,滑环处火花反而更大,加闸减速停机快结束时,定子内部在+X轴方向冒烟,停止转动之后又窜出小股火苗。值班人员迅即使用干粉灭火器灭火,约2~3分钟将火扑灭。

1 事故后展现的表象

1.1 四月八日上午,电站相关人员对该机组进行了现场察看、测试。主要表现在:励磁机电枢轴上部的钢制下集电环表面烧黑、铜电刷与刷握烧结在一起、电刷无法取出;水轮机顶盖上有黑褐色污水、污油;主厂房施

工分缝混凝土结构缝隙清晰可见、缝内尘土灭失;励磁机线圈绝缘电阻大于10 MΩ、发电机转子线圈绝缘电阻500 MΩ、发电机定子线圈直流电阻:A 相0.63Ω、B 相0.337Ω、C 相0.343Ω;发电机定子线圈绝缘电阻见下表:

定子线圈A 相首端对铁芯和末端对铁芯用直流电桥施测读不出电阻值,初步判断为非直接接地故障。

1.2 事故抢修拆解水轮发电机后发现:在+X轴方向A 相末端定子绕组的下层线棒上部从定子铁芯线槽内105mm 到绕组上端部范围内的线棒全部熔断,详见图1。 绕组外层绝缘物碳化、但尚未破碎,铁芯线槽未损坏;φ265导轴承筒式瓦表层全是黑色烧(磨)蚀物及石棉盘根碎屑;上、下固定迷宫环在+X 0-Y 扇区有约圆周长的1/3弧段严重磨损;水轮机轴承颈段有1/3圆周面磨损,上部较轻微、下部严重,其中:对应水导瓦下部环向油沟槽上圆环边磨损深达0.30mm ,下边磨深达0.5mm ;转轮上冠、下环表平面偏磨成凹凸沟槽,上冠处深0.3mm 、下环处沟深0.60mm ;转轮叶片杓部背面镶焊的不锈钢耐磨片有5片成角形或弧形断裂,其中3个连续叶片。

定子

255铁芯

(径向由内向外)

说明:

3/41.定子槽数198,线圈节距1-8,每极每相槽数2 ,左线棒为

下层绕组,右线棒为上层绕组,B级绝缘

2.每圈9匝,线规2-1.95×4.1mm2双玻璃丝包扁铜线,SBECB

3.电气接线型式为2Y

4.第1匝熔断长度250 mm(最长段),第4匝熔断长度55 mm(最短

段),斜端部并绕线匝外边匝熔断长度比内边匝短约50~60mm

图1:定子绕组尺寸及匝间短路熔断区域图

5 0 6 3 5

2 机组有关参数及事故前运行工况

2.1 发电机设计参数

转子磁极对数12,定子铁芯高度360mm ,定子铁芯线槽数198,三相双层迭绕组,每相每极槽数q = 2,极距τ=Q/2qm = 8.25槽,槽距角α=21.81818182°,短节距y 1=7(1-8)槽。绕组分布系数k b =0.9553, 短距系数

3

4

k p =0.9718。

发电机有198个线圈,每相绕组有66个线圈,由两条支路并联联接组成,每支路由33个线圈串联联接。相绕组出线端子在-X 侧(首端)和+X侧(末端),定子绕组接线为星形接线。

发电机顶端同轴安装有直流励磁机和永磁发电机。

2.2 立式水轮机相关参数

HL240转轮标称直径1200mm ,上下迷宫转动部分为圆筒状平面、无沟槽形式,过机流量7.9 m3/s ,Φ265筒式导轴承轴瓦高度275mm ,主轴密封为石棉盘根箱结构。

2.3 事故前运行工况

发电机出口线电压6.2kv ,线电流110A ;有功功率1050kw ,无功功率650kvar ;励磁电压90v ,励磁电流 195 A ;温度、摆度、振动、水压力等参数均无异常。

3 事故分析

发电机定子线圈线棒直线部分长度460mm ,每圈9匝,由两根1.95×4.1mm 2双玻璃丝包扁铜线并绕制而成;因定子绕组每支路由33个线圈串联组成,所以每线圈等效电压190.91 v,每匝等效电压21.21 v,又因为是短距分布绕组,故实际电压要稍大于上述等效电压值。转子线圈每极33.5匝,由一根3.8×13.5 mm2扁裸铜线绕制而成,每极额定电压48 v,最大电流310 A;定子铁芯内径R1150,转子装配磁极靴弧顶外径R1146,极距τ=301.07 mm,磁极铁芯极靴圆弧半径R812,极靴宽度210 mm,磁极铁芯高度357 mm,宽度140 mm。定转子空气间隙4 mm。

当发生事故时发电机进相运行,输出有功功率,吸收电网感性无功功率,U = 6.2 kv,P = 300 kw,无功功率表指针反向打表,即Q ≥1500kvar, 由视在功率公式:

S P +Q =3U I ,求得 : I P +Q /3U

= 300+1500 /(3×6.2) = 142.4 A

事故前,该电站两台机组并列后向电网馈电。假设6.3kv 母线电压受事故影响较小,仍然三相对称,馈电电流亦基本对称。因发电机A 相绕组一条支路断开,所以A 相电流只能全部流经A 相绕组的另一条支路。对比B 相、C 相绕组,A 相绕组支路电流是B 相、C 相绕组支路电流的两倍。

下面用对称分量法对事故工况进行筒略分析。 正序电流分量、负序电流分量、零序电流分量分别为:

·

I a +=(Ia + αI b +αI c) /3

·

··

·2

I a - ﹦(I a + α Ib +αI c) /3

I a o ﹦(I a + Ib + Ic) /3

·

·

·

·

·

2

··

其中:旋转因子 α=e

j120o

13

=cos120 +jsin120=-2+j 2

o

o

(1)支路电流的复数表达式为: 1) 完好支路(-Y 半圆侧):

·

I -Y a =I -Y a =142.4 A I-Y b =71.2e

·

-j120o

A I-Y c =71.2 e

·

j120o

A

2) 熔断A 相绕组支路(+Y 半圆侧):

I+Ya =0 A I+Yb =71.2e

·

·

-j120o

A I+Yc =71.2 e

·

j120o

A

(2)将上述两支路复电流分别代入对称分量法公式中,经整理计算后,得:

1)完好支路(-Y 半圆侧):

I-Y a +=94.93 A I-Y a -=23.73 A I-Y a o =23.73 A

·

·

·

2)熔断A 相绕组支路(+Y 半圆侧):

I+Ya +=47.46 A I+Ya -=-23.73 A I+Ya o =-23.73 A 各支路电流、正序分量、负序分量、零序分量的矢量图绘于图2、图

3

·

·

·

从以上计算数据可知:各支路三相电流之差远超过额定电流的20%;

各支路负序电流超过额定电流的30%,从而超过了不大于12%的规定值。另

外,+Y 半圆侧支路A 相负序电流及零序电流的实际方向与正序电流的实际正方向相反,即相差180电角度。对比+Y 半圆侧支路和-Y 半圆侧支路电流矢量发现:各对应相的负序电流矢量和零序电流矢量分别反相,即相差180电角度,而有效值相等;正序电流矢量分别同相,但-Y 半圆侧支路电流是+Y 半圆侧支路电流的两倍。根据电机学原理:

同步电机相绕组电枢反应基波磁动势:

f k1 = 0.9 kdp1 Nk1 I cosωt cosα= F k1 cosωt cosα 三相合成基波磁动势的幅值:

o

o

3

F 1 = F k1 = 1.35 kdp1 Nk1 I

2

由于三相零序基波磁动势合成为零,在气隙中不产生零序磁场,仅在各相绕组中产生零序漏抗,且其量值远小于负序漏抗,所以零序电流分量在定子绕组中产生热损耗。

发电机绕组基波绕组系数、线圈组匝数为已定值,所以f k1和F 1均正比于电流I 。对于正序电流分量三相合成基波磁动势的幅值,+Y 半圆侧支路是-Y 半圆侧支路的一半,且正向旋转的磁动势矢量同向;而对于负序电流分量三相合成基波磁动势,两支路的幅值相等,但反向旋转的磁动势矢量反向。由于事故时,发电机进相运行,即相电流I 超前于相绕组感应电动势E o 一个电角度φ,F 1对励磁磁势F f1起增磁作用。故气隙磁通密度将比空载时增大,且-Y 半圆侧大于+Y半圆侧。负序电流分量产生的三相合成磁动势在空间上始终指向定子圆周面的某一侧,并以ω=2πf 1角速度反向旋转,在转子绕组中感应f 2 = 2f1 = 100Hz的交变电动势,当转子绕组短路时,产生交变电流,起削弱负序磁场的作用。由于正序分量合成磁动势和

°

·

·

·

负序分量合成磁动势,各以同步速向相反方向旋转,在任一瞬间合成磁动势仍按正弦规律分布,为一椭圆形旋转磁动势。合成磁动势的幅值:

F = F ++F -+2 F+ F-cos2ωt

上式表明:合成磁动势的幅值是随时间变化的。

合成旋转磁动势的角速度与合成磁动势幅值的平方成反比,在椭圆长轴处角速度低,在短轴处角速度高,故角速度也是随时间变化的,但角速度的平均值仍为ω=2πf 1。

综合上述分析可知:

(1)由于不平衡电流的作用,使发电机的合成磁动势发生了变化,且是一椭圆形旋转磁动势。

(2)合成磁动势的角速度是随时间变化的,但角速度的平均值仍为维持ω=2πf 1不变。

2

2

(3)正序分量合成磁动势和磁通,-Y 侧气隙中量值是+Y侧的两倍。

(4)负序分量合成磁动势和磁通,气隙中量值相等,但瞬时实际方向相反。

(5)零序分量合成磁动势和磁通为零。

发电机定子绕组接线是两支路并联引出,而两支路的三相绕组中电流又严重不对称。正序电流分量产生的电磁力,-Y 侧大于+Y侧,使得转子受到一个指向-Y 侧的电磁作用力;负序电流分量的效应,使得转子受到一个反向旋转的电磁作用力;由于相绕组中电流严重不平衡, 而在转子转轴和定子机座上产生较大的振动力矩,导致损坏水轮发电机组结构。

从定子铁芯线槽未损坏和线圈损坏情况来看,可能是双玻璃丝包扁铜

线有气孔、杂质,或有对焊接头局部裂纹、夹渣现象等缺陷,导致发热、熔断、引弧,匝间短路,直至把整个线圈线棒熔断。

4 结语

定子绕组多条支路并联后引出接线的水轮发电机,当某一条支路因故断开,产生的不平衡电流对发电机的安全运行影响很大。正序电流分量使转子受到一侧向不平衡电磁力,引起发电机转子振动,负序电流分量引起发电机的转子过热、转子振动,往往使发电机转子烧坏、水轮发电机组结构损坏、甚至损毁。

因此,除了在设计、制造发电机时,采取三相平衡措施,控制好施工工艺,做好平衡工作外。运行部门要完善继电保护、巡检制度、安全措施等,使发电机不欠压、超压或长期过负荷运行。经常测量发电机定子、转子线圈直流电阻、绝缘电阻,并进行历次之间的比较,以期发现直流电阻值、绝缘电阻吸收比、极化系数等参数是否符合规定,有否不明原因的变化、异味等。通过加强运行、巡视、维护、检测等日常管理工作,努力消除机组隐患,保证发电机组的安全、可靠运行。

参考文献:

1. 李发海 朱东起 电机学(第三版)[M ]北京 科学出版社 2001.1 2. 王正茂 闫治安等 电机学(第一版)[M ] 西安 西安交大出版社 2000.9 3. 胡虔生 胡敏强 电机学(第二版)[M ]北京 中国电力出版社 2009.7


相关文章

  • 水电站的实习报告
  • 幼儿园进入##电站实习,我们首先要了解电站的介绍:1、##水电站位于越南水系的黑水河上游。于1969年开始勘测,由原南宁地区水电设计队负责设计,1969年9月正式动工兴建,1974年10月1日第一台机组投产发电,至1979年四台机组全部投产发电。占地面积为3180平方千米;库容:2915万立方米。正 ...

  • 自动化实习报告
  • 自动化实习报告 按照老师的教学计划安排,本人xx年10月份开始到____公司进行实习,____是以水力发电机组安装、检修为主的一个经济实体,目前主要是对____发电厂提供检修服务,所以我的实习场所也是以____发电厂为主。经过这段时间的跟班实习,我对电厂的整个生产过程、发电厂的主要设备有了更进一步的 ...

  • 机电设备维修与管理实习报告
  •   实习单位:武钢电气公司   实习科目:电动机与变压器的检测维修管理   实习时间:11月13日—12月8日上班时间:上午,8点-11点下午,12点40分-4点   进厂对自己的要求:   进厂要穿工作服,穿防电绝缘鞋,戴安全帽   不要走近触摸机器设备,同学间不可开玩笑,工作认真,严格遵守纪律 ...

  • 电气工程及其自动化专业毕业实习报告
  • 按照老师的教学计划安排,本人200*年10月份开始到____公司进行实习,____是以水力发电机组安装、检修为主的一个经济实体,目前主要是对____发电厂提供检修服务,所以我的实习场所也是以____发电厂为主。经过这段时间的跟班实习,我对电厂的整个生产过程、发电厂的主要设备有了更进一步的了解。 __ ...

  • 20XX年柘林水电厂实习报告
  • 实习时间:2010-4-2~~~2010-4-9 实习地点:柘林水电开发有限公司 实习人:05g05班 张 艳 目录 一:实习目的和要求 二:安规的学习 三:柘林电厂介绍 四:实习感想 实习内容 一:实习目的和要求 了解电能生产的全过程及主要电气设备的构成、型号、参数、结构、布置方式,对电厂生产过程 ...

  • 发电公司电力实习报告
  • 实习报告 今年3月1日至6月1日,我到炎陵县发电公司实习.该站兴建于1973年11月,始用站名自源电站,后改为发电公司,属于中型水利发电站,1977年4月9日,1#机投产,2#.3#和4#.5#机均为自我安装调试,分别于1978年9月28日和1987年12月25日投产.五台机组总装机容量为15000 ...

  • 汽车电器实习报告
  •   一、实习目的   在为期两周的实习当中感触最深的便是实践联系理论的重要性,当遇到实际问题时,只要认真思考,对就是思考,用所学的知识,再一步步探索,是完全可以解决遇到的一般问题的。这次的内容包括启动系、充电系、点火系、雨刮系、灯火系等。本次实习的目的主要是使我们对汽车元件及整机装配工艺有一定的感性 ...

  • 参观变电站实习报告
  • 前言 电力工业是国民经济发展中最重要的基础能源产业,是国民经济的第一基础产业,是关系国计民生的基础产业,是世界各国经济发展战略中的优先发展重点。作为一种先进的生产力和基础产业,电力行业对促进方国民经济的发展和社会进步起到重要作用。与社会经济和社会发展有着十分密切的关系,它不仅是关系国家经济安全的战略 ...

  • 工作业绩总结
  • 工作业绩总结 水轮发电机组值班运行是集脑力与体力的综合性技术工作。水轮发电机组安全可靠稳定运行,效率最高,发电量最多,耗水量最少,事故发生时保证损失最少是水轮发电机组值班的技术核心。因此,水轮发电机组值班技术是保证水电厂乃至电力系统安全、可靠、经济运行水平的根本保证。 根据对水轮发电机组值班的严格技 ...

  • 电力企业员工个人工作业绩总结
  •  水轮发电机组值班运行是集脑力与体力的综合性技术工作。水轮发电机组安全可靠稳定运行,效率最高,发电量最多,耗水量最少,事故发生时保证损失最少是水轮发电机组值班的技术核心。因此,水轮发电机组值班技术是保证水电厂乃至电力系统安全、可靠、经济运行水平的根本保证。   根据对水轮发电机组值班的严格技术要求, ...