水的深度处理

水的深度处理

水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;

(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。当进入活性炭滤池水中的有机物可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。

在水源水质不断恶化的条件下,要使自来水达到新的水质标准要求,视水源水质的不同,有些是可以强化常规处理即可达到标准;有些必须将常规处理工艺改造成深度处理工艺,增加去除溶解性有机污染物、臭味与氨氮才能达到标准的要求。深度处理是在强化常规处理的条件下,增加活性炭吸附、生物预处理等构筑物。

1、深度处理技术可以分为以下几种:

1.1、投加氧化剂

投加高锰酸钾、臭氧、过氧化氢、二氧化氯等氧化剂取代氯,使氯的消毒副产物减少,可以改善水的混凝条件,将粘附在胶体表面的有机物氧化,使胶体容易凝聚下沉。

1.2、活性炭吸附(下节内容讨论)

1.3、生物预处理

如原水中氨氮高,则采用生物预处理去除。

1.4、膜技术

微滤(孔径约0.1μm)和超滤(孔径约0.01μm),在给水厂可取代砂滤,超滤可去除细菌、病毒等颗粒污染物,但对溶解性小分子有机污

染物和臭味物质不能去除,可去除CODMn约10%(主要去除1万以上分子量)。

2、活性炭的吸附性能:

任何碳质原材料几乎都可以用来制造活性炭。植物类原料有木材、锯末、果壳、蔗渣、纸浆、废液等。无机类原料有褐煤、烟煤、无烟煤、泥炭、石油脚、石油焦炭、石油沥清等。

活性炭的制造主要分成碳化及活化两步。碳化有多种作用,一是使原材料分解放出水气、一氧化碳、二氧化碳及氢等气体,二是使原材料分解成碎片,并重新集合成稳定结构。原材料碳化后成为一种由碳原子微晶体构成的孔隙结构,其表面积达200~400m/g。活化是在有氧化剂的作用下,对碳化后的材料加热,以产生活性炭。活化过程大致所起的3个作用:(1)生成新的微孔或将原来闭塞的微孔打通;(2)扩大原有的细孔尺寸;(3)将相邻细孔合并成更大的孔。经活化后就产生更完善的孔隙结构,并使比表面积可达1000~1300m/g。活化过程同时把活性炭表面的化学结构固定下来。

活性炭的孔隙大小可分成微孔、中孔和大孔三级,其孔径分别为<2nm、2~6nm和60nm~10μm。 活性炭以粉状(粉状活性炭PAC)和粒状(粒状活性炭GAC)两种形式应用。

粉炭的粒度为10~50μm,直接投入水中,一般与混凝剂一起联合使用,很难回收重复利用,粉炭只用于投量少或间歇处理的情况。

颗粒活性炭包括柱状炭和破碎炭二种,前者是制备好的粉末活性炭通过煤焦油等粘接材料通过粘接、成型工艺制成一定大小园柱颗粒,直

径一般为1.5~2mm,长度3~5mm。后者是将原来烧制好进行破碎,筛分得到的不规则颗粒,粒径一般为2~4mm。破碎炭的吸附性能优于柱状炭。武进水厂粒炭为煤质柱状炭,粒径1.5mm。粒炭都以吸附床的形式应用。当吸附能力丧失后,可通过再生方法恢复炭的吸附能力。用于废水处理的活性炭,所吸附的有机物量可达40%的炭重;但用于给水处理的活性炭,吸附有机物量只有炭重的7.6~8.2%。

与活性炭吸附能力最直接有关的因素是表面的氧化物复合体的性能。一般把表面氧化物可分成酸性的碱性两大类,并按这一概念来解释活性炭的吸附作用。

活性炭表面氧化物的成分主要受活化过程的影响,一般在300~500℃以下用湿空气制造的活性炭中,酸性氧化物占优势;而在800~900℃,用空气、蒸气或二氧化碳为活化氧化剂所制造的活性炭中,则碱性氧化物占优势;在500~800℃之间活化的活性炭,则具有两性性质。

活性炭是一种多孔隙、非极性的吸附剂,具有巨大的表面积800~1300m/g,其吸附作用主要来源于物理表面吸附作用,活性炭对于非极性和弱极性、水溶性差的有机物有较好的吸附能力,例如芳香族、脂肪族有机物等;但是对于醇类、糖类等较强极性、水溶性较好的有机物,吸附性差,基本上无法有效去除。 2

3、活性炭滤池的处理性能:

活性炭滤池的构造类似于快滤池、V形滤池、翻板滤池等几种形式;以水流方向分:下向流(降流式)和上向流(升流式)。当采用升流式炭吸附池时,应采取防止二次污染措施。

活性炭滤池一般设在砂滤池后面(也有在砂滤池前的),以防水中悬浮固体物堵塞炭的孔隙结构,影响吸附功能。活性炭滤池的出水需要经过消毒处理,以确保水中微生物的安全性。活性炭滤池一般是用来去除溶解有机物。

活性炭滤池的滤层厚与接触时间的综合关系通常用参数空床接触时间(EBCT)来表示,例如当水通过滤层的速度为6m/h,滤层厚度1m时,EBCT=1/6*60=10分钟。《室外给水设计规范》建议空床接触时间宜采用6~20分钟,空床速度8~20m/h,炭层厚度1.0~2.5m。武进水厂炭层厚度2.0m,滤速10m/h,空床时间12分钟。炭滤池虽然在砂滤池后,但仍然像砂滤池一样,当炭滤层由于截留过多的悬浮固体引起水头损失过高时,要进行反冲洗,在进水浊度极低的条件下,两次炭滤池反冲洗时间间隔,即吸附的工作周期可达数周。《室外给水设计规范》建议冲洗周期宜采用3~6天。至于炭滤料从工作起需要再生的时间,即其有用寿命,主要取决于水中有机物的成分和含量,可从4~6个月到2~3年不等,有臭氧氧化的炭滤池寿命要长些。

活性炭的处理能力不仅有活性炭的吸附作用,还有炭滤层内的生物活动(生物活动包括细菌、微生物),对可生物降解的有机物同时起去除作用。对可吸附而又可降解的有机物来说,吸附与生物降解将是竞争的相互作用。生物活动以活性炭表面形成的生物膜来体现,每毫升活性炭的表面约含有能形成10~10个菌落单位的细菌。这些附着在活性炭表面的细菌形成一薄层厚度不均匀的生物膜,平均只是在每40μm的表面上有一个细菌,细菌的浓度以在活性炭大孔区最高。生物膜的形成是水

中原有的细菌以水中的天然有机物为营养物增殖的结果。

活性炭滤池虽然同时具有吸附与降解两种功能,但这些功能是否得到充分利用,则取决于有机物的可吸附性与可生物降解性。

水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;

(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。对第四类有机物,活性炭滤池的吸附与生物降解都不起作用。第二类有机物只能靠吸附去除,因此与生物活动的强弱无关。第三类有机物只能靠生物活动来去除,加强炭滤池中的生物活动虽然能增加去除率,活性炭的寿命与之无关。对第一类有机物来说,加强生物活动可以减少活性炭的吸附量,可以延长活性炭的寿命。由此可以看出,当进入活性炭滤池水中的有机物原来可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。

一般来说,饮用水的生物过滤解决微污染所产生的问题,有机物经臭氧化的副产物醛、羧酸、醛酸和酮酸等都是容易生物降解的,在生物滤池中的去除率>75%。臭氧化的这些副产物如果不经后续的生物过滤去除,必然会在管网中引起再生长,这可以说是采用臭氧化的条件,也是采用生物过滤的条件。

4、臭氧—活性炭存在的问题及解决方法

活性炭滤池处理有机物主要作用是吸附及生物降解,在生物降解的同时也会产生细菌、微生物、微型动物等。

如浙江南星水厂,在原水中只投加臭氧时,在砂滤池中生长长度

3~15cm不等的虫子(沙蚕),投加0.6~1.0mg/l的臭氧接触时间3min对沙蚕无任何效果,但2.2mg/l的氯接触2小时对沙蚕的杀灭效果良好。 在生物炭滤池出水中,有产生微型动物泄漏的风险,国内其他水司在炭滤后的水中检测出轮虫、线虫、猛水蚤、剑水蚤、无节幼体、枝角类等。

光催化氧化技术是近几十年来发展起来的一项深度氧化(AOP)污染治理新技术,因其具有降解彻底、无二次污染等优点而倍受人们的瞩目。光催化氧化技术是一种新兴的水处理技术。1972 年,Fujishima和Honda报道了在光电池中光辐射TiO2 可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976 年,Carey 等在光催化降解水中污染物方面进行了开拓性的工作。此后,光催化氧化技术得到迅速发展。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点,在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义

光催化降解技术中,通常是以TiO2 等半导体材料为催化剂。这些半导体粒子的能带结构一般由填满电子的价带和空的高能导带构成,价带和导带之间存在禁带,当用能量等于或大于禁带宽度的光照射到半导体时,价带上的电(e-)被激发跃迁到导带形成光生电子(e-),在价带上产生空穴(h+),并在电场作用下分别迁移到粒子表面。光生电子(e-) 易被水中溶解氧等氧化性物质所捕获,而空穴因具有极强的获取电子的能力而具有很强的氧化能力,可将其表面吸附的有

机物或OH- 及H2O 分子氧化成·OH 自由基,·OH 自由基几乎无选择地将水中有机物氧化。

光催化氧化反应只需要光、催化剂和空气,处理成本相对较低,已成为一种较有前景的水处理方法。但国内目前对它的研究还停留在实验室水平,如实现其工业化,还需在反应机理和反应动力学、寻找高效光催化剂、反应器模型的设计、催化剂的固载化、降低成本等方面作进一步的研究。

由于粉末催化剂在实际生产中难以应用,于是近年来趋向于发展固定相催化剂。然而作为近30 年发展起来的新的研究领域,光催化降解现在还基本上停留在理论研究阶段,实际应用很少。因此无论是在光催化机理的研究方面,还是在工业实际应用中都需要进一步的深入研究,主要表现在如下几个方面:

(1)制备高效率的催化剂,提高催化剂的催化活性。进一步完善催化剂的改性技术,将贵金属、金属离子、光活性物质加入催化剂中,或者将多种光催化剂复合,以提高光催化剂活性。另外,进一步研究制备超细易分散纳米材料,制备更高光效的其他光催化剂。

(2)选择合适的载体,研究催化剂固定技术。制备负载型催化剂,使其既能保护甚至提高TiO2 的光催化活性,又能提供较强的结合度,以便回收重复使用; 研究载体与光催化剂之间的相互作用,探讨固载过程中各个影响因素对光催化过程的影响; 解决负载化所带来的传质受限的问题等。

(3)设计高效实用的反应器。进一步研究光催化降解有机物的机理和降解动力学,从而确定相应高效的反应器模型,在此基础上设计出高效实用的反器。

(4)提高对太阳光的利用率。自然光中可被光催化反应所利用

的辐射光范围有限,通过对催化剂表面改性,利用敏化材料将TiO2 敏化,从而加大激发光源的可利用波长范围,提高太阳光的利用率,以太阳光代替紫外光,可降低处理成本, 有着重要的工程意义。

(5)结合其他水处理技术,获取最佳的处理效果。光催化氧化技术被认为是在环境保护领域内一种有前途的新型高级氧化技术,与其他处理技术组合成为处理水中污染物的一个热点。例如氧化剂、电化学、超声、微波、磁化、生物处理等环境治理技术与光催化氧化的工艺组合更能促进它在水处理中的应用,特别是对于那些有毒、生物难以降解的污染物、污水的后续深度处理等。在基础研究方面,光催化技术和其他方法的联合还需更多的理论支持,需更深入地研究其各自作用机理和相互协同机理。在应用研究上,对于各参数的影响情况还需作进一步的研究, 以优化反应体系。

虽然光催化氧化技术发展不是很完善,还没有达到工业化的程度,但是由于反应条件温和、操作条件容易控制、氧化能力强、无二次污染,加之TiO2 化学稳定性高、无毒等优点,光催化氧化技术仍是一项具有广泛应用前景的新型水污染处理技术。

当代水处理技术

姓名:柴东东 学号:021411113

水的深度处理

水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;

(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。当进入活性炭滤池水中的有机物可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。

在水源水质不断恶化的条件下,要使自来水达到新的水质标准要求,视水源水质的不同,有些是可以强化常规处理即可达到标准;有些必须将常规处理工艺改造成深度处理工艺,增加去除溶解性有机污染物、臭味与氨氮才能达到标准的要求。深度处理是在强化常规处理的条件下,增加活性炭吸附、生物预处理等构筑物。

1、深度处理技术可以分为以下几种:

1.1、投加氧化剂

投加高锰酸钾、臭氧、过氧化氢、二氧化氯等氧化剂取代氯,使氯的消毒副产物减少,可以改善水的混凝条件,将粘附在胶体表面的有机物氧化,使胶体容易凝聚下沉。

1.2、活性炭吸附(下节内容讨论)

1.3、生物预处理

如原水中氨氮高,则采用生物预处理去除。

1.4、膜技术

微滤(孔径约0.1μm)和超滤(孔径约0.01μm),在给水厂可取代砂滤,超滤可去除细菌、病毒等颗粒污染物,但对溶解性小分子有机污

染物和臭味物质不能去除,可去除CODMn约10%(主要去除1万以上分子量)。

2、活性炭的吸附性能:

任何碳质原材料几乎都可以用来制造活性炭。植物类原料有木材、锯末、果壳、蔗渣、纸浆、废液等。无机类原料有褐煤、烟煤、无烟煤、泥炭、石油脚、石油焦炭、石油沥清等。

活性炭的制造主要分成碳化及活化两步。碳化有多种作用,一是使原材料分解放出水气、一氧化碳、二氧化碳及氢等气体,二是使原材料分解成碎片,并重新集合成稳定结构。原材料碳化后成为一种由碳原子微晶体构成的孔隙结构,其表面积达200~400m/g。活化是在有氧化剂的作用下,对碳化后的材料加热,以产生活性炭。活化过程大致所起的3个作用:(1)生成新的微孔或将原来闭塞的微孔打通;(2)扩大原有的细孔尺寸;(3)将相邻细孔合并成更大的孔。经活化后就产生更完善的孔隙结构,并使比表面积可达1000~1300m/g。活化过程同时把活性炭表面的化学结构固定下来。

活性炭的孔隙大小可分成微孔、中孔和大孔三级,其孔径分别为<2nm、2~6nm和60nm~10μm。 活性炭以粉状(粉状活性炭PAC)和粒状(粒状活性炭GAC)两种形式应用。

粉炭的粒度为10~50μm,直接投入水中,一般与混凝剂一起联合使用,很难回收重复利用,粉炭只用于投量少或间歇处理的情况。

颗粒活性炭包括柱状炭和破碎炭二种,前者是制备好的粉末活性炭通过煤焦油等粘接材料通过粘接、成型工艺制成一定大小园柱颗粒,直

径一般为1.5~2mm,长度3~5mm。后者是将原来烧制好进行破碎,筛分得到的不规则颗粒,粒径一般为2~4mm。破碎炭的吸附性能优于柱状炭。武进水厂粒炭为煤质柱状炭,粒径1.5mm。粒炭都以吸附床的形式应用。当吸附能力丧失后,可通过再生方法恢复炭的吸附能力。用于废水处理的活性炭,所吸附的有机物量可达40%的炭重;但用于给水处理的活性炭,吸附有机物量只有炭重的7.6~8.2%。

与活性炭吸附能力最直接有关的因素是表面的氧化物复合体的性能。一般把表面氧化物可分成酸性的碱性两大类,并按这一概念来解释活性炭的吸附作用。

活性炭表面氧化物的成分主要受活化过程的影响,一般在300~500℃以下用湿空气制造的活性炭中,酸性氧化物占优势;而在800~900℃,用空气、蒸气或二氧化碳为活化氧化剂所制造的活性炭中,则碱性氧化物占优势;在500~800℃之间活化的活性炭,则具有两性性质。

活性炭是一种多孔隙、非极性的吸附剂,具有巨大的表面积800~1300m/g,其吸附作用主要来源于物理表面吸附作用,活性炭对于非极性和弱极性、水溶性差的有机物有较好的吸附能力,例如芳香族、脂肪族有机物等;但是对于醇类、糖类等较强极性、水溶性较好的有机物,吸附性差,基本上无法有效去除。 2

3、活性炭滤池的处理性能:

活性炭滤池的构造类似于快滤池、V形滤池、翻板滤池等几种形式;以水流方向分:下向流(降流式)和上向流(升流式)。当采用升流式炭吸附池时,应采取防止二次污染措施。

活性炭滤池一般设在砂滤池后面(也有在砂滤池前的),以防水中悬浮固体物堵塞炭的孔隙结构,影响吸附功能。活性炭滤池的出水需要经过消毒处理,以确保水中微生物的安全性。活性炭滤池一般是用来去除溶解有机物。

活性炭滤池的滤层厚与接触时间的综合关系通常用参数空床接触时间(EBCT)来表示,例如当水通过滤层的速度为6m/h,滤层厚度1m时,EBCT=1/6*60=10分钟。《室外给水设计规范》建议空床接触时间宜采用6~20分钟,空床速度8~20m/h,炭层厚度1.0~2.5m。武进水厂炭层厚度2.0m,滤速10m/h,空床时间12分钟。炭滤池虽然在砂滤池后,但仍然像砂滤池一样,当炭滤层由于截留过多的悬浮固体引起水头损失过高时,要进行反冲洗,在进水浊度极低的条件下,两次炭滤池反冲洗时间间隔,即吸附的工作周期可达数周。《室外给水设计规范》建议冲洗周期宜采用3~6天。至于炭滤料从工作起需要再生的时间,即其有用寿命,主要取决于水中有机物的成分和含量,可从4~6个月到2~3年不等,有臭氧氧化的炭滤池寿命要长些。

活性炭的处理能力不仅有活性炭的吸附作用,还有炭滤层内的生物活动(生物活动包括细菌、微生物),对可生物降解的有机物同时起去除作用。对可吸附而又可降解的有机物来说,吸附与生物降解将是竞争的相互作用。生物活动以活性炭表面形成的生物膜来体现,每毫升活性炭的表面约含有能形成10~10个菌落单位的细菌。这些附着在活性炭表面的细菌形成一薄层厚度不均匀的生物膜,平均只是在每40μm的表面上有一个细菌,细菌的浓度以在活性炭大孔区最高。生物膜的形成是水

中原有的细菌以水中的天然有机物为营养物增殖的结果。

活性炭滤池虽然同时具有吸附与降解两种功能,但这些功能是否得到充分利用,则取决于有机物的可吸附性与可生物降解性。

水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;

(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。对第四类有机物,活性炭滤池的吸附与生物降解都不起作用。第二类有机物只能靠吸附去除,因此与生物活动的强弱无关。第三类有机物只能靠生物活动来去除,加强炭滤池中的生物活动虽然能增加去除率,活性炭的寿命与之无关。对第一类有机物来说,加强生物活动可以减少活性炭的吸附量,可以延长活性炭的寿命。由此可以看出,当进入活性炭滤池水中的有机物原来可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。

一般来说,饮用水的生物过滤解决微污染所产生的问题,有机物经臭氧化的副产物醛、羧酸、醛酸和酮酸等都是容易生物降解的,在生物滤池中的去除率>75%。臭氧化的这些副产物如果不经后续的生物过滤去除,必然会在管网中引起再生长,这可以说是采用臭氧化的条件,也是采用生物过滤的条件。

4、臭氧—活性炭存在的问题及解决方法

活性炭滤池处理有机物主要作用是吸附及生物降解,在生物降解的同时也会产生细菌、微生物、微型动物等。

如浙江南星水厂,在原水中只投加臭氧时,在砂滤池中生长长度

3~15cm不等的虫子(沙蚕),投加0.6~1.0mg/l的臭氧接触时间3min对沙蚕无任何效果,但2.2mg/l的氯接触2小时对沙蚕的杀灭效果良好。 在生物炭滤池出水中,有产生微型动物泄漏的风险,国内其他水司在炭滤后的水中检测出轮虫、线虫、猛水蚤、剑水蚤、无节幼体、枝角类等。

光催化氧化技术是近几十年来发展起来的一项深度氧化(AOP)污染治理新技术,因其具有降解彻底、无二次污染等优点而倍受人们的瞩目。光催化氧化技术是一种新兴的水处理技术。1972 年,Fujishima和Honda报道了在光电池中光辐射TiO2 可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976 年,Carey 等在光催化降解水中污染物方面进行了开拓性的工作。此后,光催化氧化技术得到迅速发展。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点,在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义

光催化降解技术中,通常是以TiO2 等半导体材料为催化剂。这些半导体粒子的能带结构一般由填满电子的价带和空的高能导带构成,价带和导带之间存在禁带,当用能量等于或大于禁带宽度的光照射到半导体时,价带上的电(e-)被激发跃迁到导带形成光生电子(e-),在价带上产生空穴(h+),并在电场作用下分别迁移到粒子表面。光生电子(e-) 易被水中溶解氧等氧化性物质所捕获,而空穴因具有极强的获取电子的能力而具有很强的氧化能力,可将其表面吸附的有

机物或OH- 及H2O 分子氧化成·OH 自由基,·OH 自由基几乎无选择地将水中有机物氧化。

光催化氧化反应只需要光、催化剂和空气,处理成本相对较低,已成为一种较有前景的水处理方法。但国内目前对它的研究还停留在实验室水平,如实现其工业化,还需在反应机理和反应动力学、寻找高效光催化剂、反应器模型的设计、催化剂的固载化、降低成本等方面作进一步的研究。

由于粉末催化剂在实际生产中难以应用,于是近年来趋向于发展固定相催化剂。然而作为近30 年发展起来的新的研究领域,光催化降解现在还基本上停留在理论研究阶段,实际应用很少。因此无论是在光催化机理的研究方面,还是在工业实际应用中都需要进一步的深入研究,主要表现在如下几个方面:

(1)制备高效率的催化剂,提高催化剂的催化活性。进一步完善催化剂的改性技术,将贵金属、金属离子、光活性物质加入催化剂中,或者将多种光催化剂复合,以提高光催化剂活性。另外,进一步研究制备超细易分散纳米材料,制备更高光效的其他光催化剂。

(2)选择合适的载体,研究催化剂固定技术。制备负载型催化剂,使其既能保护甚至提高TiO2 的光催化活性,又能提供较强的结合度,以便回收重复使用; 研究载体与光催化剂之间的相互作用,探讨固载过程中各个影响因素对光催化过程的影响; 解决负载化所带来的传质受限的问题等。

(3)设计高效实用的反应器。进一步研究光催化降解有机物的机理和降解动力学,从而确定相应高效的反应器模型,在此基础上设计出高效实用的反器。

(4)提高对太阳光的利用率。自然光中可被光催化反应所利用

的辐射光范围有限,通过对催化剂表面改性,利用敏化材料将TiO2 敏化,从而加大激发光源的可利用波长范围,提高太阳光的利用率,以太阳光代替紫外光,可降低处理成本, 有着重要的工程意义。

(5)结合其他水处理技术,获取最佳的处理效果。光催化氧化技术被认为是在环境保护领域内一种有前途的新型高级氧化技术,与其他处理技术组合成为处理水中污染物的一个热点。例如氧化剂、电化学、超声、微波、磁化、生物处理等环境治理技术与光催化氧化的工艺组合更能促进它在水处理中的应用,特别是对于那些有毒、生物难以降解的污染物、污水的后续深度处理等。在基础研究方面,光催化技术和其他方法的联合还需更多的理论支持,需更深入地研究其各自作用机理和相互协同机理。在应用研究上,对于各参数的影响情况还需作进一步的研究, 以优化反应体系。

虽然光催化氧化技术发展不是很完善,还没有达到工业化的程度,但是由于反应条件温和、操作条件容易控制、氧化能力强、无二次污染,加之TiO2 化学稳定性高、无毒等优点,光催化氧化技术仍是一项具有广泛应用前景的新型水污染处理技术。

当代水处理技术

姓名:柴东东 学号:021411113


相关文章

  • 设备管理员年终个人工作总结
  • ##年,本人在建安分公司领导的正确领导下,认真执行集团公司及路桥公司《设备设施管理办法》,紧紧围绕路桥公司“以人为本、诚实守信、艰苦创业、求真务实”的工作方针。强化管理,开拓进取,较为出色地完成了各项工作任务。 由于今年七月份新成立了一个污水深度处理厂项目部,我既要负责建安分公司的设备管理工作,又要 ...

  • 设备管理员自我鉴定
  • 2xx-x年,本人在建安分公司领导的正确领导下,认真执行集团公司及路桥公司《设备设施管理办法》,紧紧围绕路桥公司“以人为本、诚实守信、艰苦创业、求真务实”的工作方针。强化管理,开拓进取,较为出色地完成了各项工作任务。 由于今年七月份新成立了一个污水深度处理厂项目部,我既要负责建安分公司的设备管理工作 ...

  • 爆破事故的预防处理方案
  •   一、不响炮的预防与处理   1.原因   (1)放炮器发生故障,使雷管不能起爆。   (2)母线、脚线、连接线有折断的地方;绝缘不良,造成不通电或电流短路。   (3)放炮器与母线、母线与脚线、脚线与脚线之间连接不实,有短路;阻力大,使电流不能正常通过,不容易起爆。   (4)雷管内电阻丝折断; ...

  • 基础施工方案
  • 桥梁基础施工 第一节 概述 桥梁上部承受的各种荷载,通过桥台或桥墩传至基础,再由基础传给地基。基础是桥梁下部结构的重要组成部分,因此,基础工程在桥梁结构物的设计与施工中,占有极为重要的地位,它对结构物的安全使用和工程造价有很大的影响。有关资料统计表明,建筑物失事70%~80%是由基础失败而引起。 桥 ...

  • 施工方案心得体会
  • :强夯是地基处理的一种方式,其基本原理就是用大吨位(10—40t)的夯锤用起重设备反复吊至高处(6—30m),让其自由下落,利用其下落所产生的巨大冲击能和振动能量,来改变土体结构,并消散其空隙水。使其形成比较均匀的硬土层来承受上部的荷载。 关键词:强夯施工 施工工艺心得体会 当天然地基较弱或承载力不 ...

  • 土方坍塌事故应急救援预案
  • 土方坍塌事故应急救援预案 为认真贯彻执行“安全第一,预防为主”的方针,进一步加强项目部安全生产管理工作,控制和减少坍塌事故的发生,并在一旦发生坍塌事故能够当机立断,采取有效措施和及时救援,最大限度地减少人员伤亡和财产损失,根据《建设工程安全生产管理条例》、《波顿科技园研发大楼基坑支护方案》及广东省、 ...

  • 加快马铃薯产业深度开发的调研报告
  • 发展经济富民强县,必须有雄劲的支柱产业.我们周边各市县,肇东.青冈有玉米深加工,北林有啤酒.卷烟,安达有奶牛养殖,望奎正在上万头生猪规模屠宰,都在特色产业开发上形成了自己的独特阵容.而我们至今还没有一项足可立县的产业,经济发展缺乏支柱企业支撑.如何冲出重围,我县的特色产业潜力究竟在哪里?笔者通过市场 ...

  • 毕业实习报告
  • 毕业实习报告 我由于属于在校外做设计,因此我的实习工作主要是同我所要从事的工作有关联。在实习期间我主要是接触一些工程进行检测,以及加固改造工作。通过这些日子的实习,使我发现在一些在设计及施工中所存在的一些问题。通过向所在单位专家的请教,明白了一些工程中易存在和发生的一系列建筑通病的产生原理及相应的检 ...

  • 建筑毕业实习报告
  • 我由于属于在校外做设计,因此我的实习工作主要是同我所要从事的工作有关联。在实习期间我主要是接触一些工程进行检测,以及加固改造工作。通过这些日子的实习,使我发现在一些在设计及施工中所存在的一些问题。通过向所在单位专家的请教,明白了一些工程中易存在和发生的一系列建筑通病的产生原理及相应的检测,处理措施。 ...

  • 建筑设计毕业实习报告
  • 我由于属于在校外做设计,因此我的实习工作主要是同我所要从事的工作有关联.在实习期间我主要是接触一些工程进行检测,以及加固改造工作.通过这些日子的实习,使我发现在一些在设计及施工中所存在的一些问题.通过向所在单位专家的请教,明白了一些工程中易存在和发生的一系列建筑通病的产生原理及相应的检测,处理措施. ...